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SUMMARY

The clinical and biological follow-up of individuals, such as the biological passport for athletes, is typically
based on the individual and longitudinal monitoring of hematological or urine markers. These follow-ups
aim to identify abnormal behavior by comparing the individual’s biological samples to an established
baseline. These comparisons may be done via different ways, but each of them requires an appropriate
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Z-scores-based methods and their application to biological monitoring 49

extra population to compute the significance levels, which is a non-trivial issue. Moreover, it is not
necessarily relevant to compare the measures of a biomarker of a professional athlete to that of a reference
population (even restricted to other athletes), and a reasonable alternative is to detect the abnormal values
by considering only the other measurements of the same athlete. Here we propose a simple adaptive
statistic based on maxima of Z-scores that does not rely on the use of an extra population. We show that, in
the Gaussian framework, it is a practical and relevant method for detecting abnormal values in a series of
observations from the same individual. The distribution of this statistic does not depend on the individual
parameters under the null hypothesis, and its quantiles can be computed using Monte Carlo simulations.
The proposed method is tested on the 3-year follow-up of ferritin, serum iron, erythrocytes, hemoglobin,
and hematocrit markers in 2577 elite male soccer players. For instance, if we consider the abnormal values
for the hematocrit at a 5% level, we found that 5.57% of the selected cohort had at least one abnormal value
(which is not significantly different from the expected false-discovery rate). The approach is a starting
point for more elaborate models that would produce a refined individual baseline. The method can be
extended to the Gaussian linear model, in order to include additional variables such as the age or exposure
to altitude. The method could also be applied to other domains, such as the clinical patient follow-up in
monitoring abnormal values of biological markers.

Keywords: Biological monitoring; Biological passport; Clinical follow-up; Longitudinal monitoring; Z-score.

1. INTRODUCTION

The systematic monitoring of biological variables over time allows for the early detection of physiolog-
ical or biological changes. Such longitudinal studies are currently used for the identification of atypical
biological observations in elite athletes (see in particular Saugy and others, 2014; Silva and others, 2013;
Sottas and others, 2007, 2011; Zorzoli and others, 2014; Zorzoli and Rossi, 2010; Damsgaard and others,
2006; Parisotto and others, 2000; Lobigs and others, 2017b). It is known that the biological markers are
impacted by both the frequency and intensity of training, the environment or health issues (Malcovati and
others, 2003; Nikolaidis and others, 2014; Thirup, 2003; Hecksteden and others, 2016b; Lombardi and
others, 2011; Sharpe and others, 2002). This biological monitoring allows for determining the baseline
value and its associated variability, provided a sufficient follow-up, and a large cohort. Several sport orga-
nizations and researchers already developed such approaches in order to establish the biological profile
of elite athletes for doping or medical concerns (Sallet and others, 2008; Malm and others, 2016). A
well-known implementation is the athlete biological passport (APB) that is designed to indirectly reveal
the effects of doping (Zorzoli and Rossi, 2010; Robinson and others, 2007; Pottgiesser and others, 2011).
It was officially introduced in 2009 and consists of a normalized follow-up of the athlete’s hematological
parameters. The data generated by the APB can be analyzed using a Bayes procedure (Sottas and others,
2007; Pottgiesser and others, 2011), which uses both an a priori distribution on the individual parameters
and the progressive inclusion of individual’s values to learn the characteristics of the individual. This
Bayes procedure is now investigated in other biomarkers, including the monitoring of muscle recovery
(Hecksteden and others, 2016a). However, Malcovati and others (2003) and Egger and others (2016)
underlined that the inter-individual variability is higher than the intra-individual one, suggesting that the
use and design of population data for estimating intra-individual variability is an issue. Other concerns
were raised by Banfi and others (2011) who pointed out that the APB methodology does not take any
environmental seasonality into account. We shall say more on this question, and discuss other possible
applications of a Bayes procedure to our context, at the end of Section 5. The aim of this work is to
provide a tractable, yet easy to implement, method for detecting abnormal values in a series of measures
from the same individual, complementary to biological analyses. We introduce three new methods based
on appropriate Z-scores and their multivariate versions to take care of several markers simultaneously
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50 G. SAULIÈRE AND OTHERS

(as suggested by Parisotto and others, 2000; Julian and others, 2017; Hecksteden and others, 2016b;
Malm and others, 2016). The simplicity of these methods allows for a clear understanding of the inner
workings. These methods are evaluated on the 3-year follow-up of five biological markers for elite male
soccer players practicing in the French soccer league. In the section below, we describe the methodological
context and explain our three methods.

2. METHODS

Let X1, . . . , Xn be n independent Gaussian random variables, with Xi ∼ N (μi, σ 2). We shall first consider
a preliminary method (Method 0), to see if the “new” observation xn is abnormal, given x1, . . . , xn−1.
Method 1 generalizes this approach, by testing if one of the observations in the sample is abnormal given
the other ones. Method 2 is designed to detect if a series of consecutive observations in the sample are
abnormal, given the rest of the sample. For these three methods (Method 0, Method 1, and Method 2),
we propose a simple statistic Tn whose distribution is known under the appropriate null hypothesis, and a
decision rule associated with this statistic.

Method 3 is somewhat different, because we want to account for possible seasonality (the behavior
of the biomarkers may differ according to the time of year (summer or winter for the data set presented
in Section 4.1)). In that case, we split the sample into two subsamples X1, . . . Xn1 and Y1, . . . , Yn2 with
n = n1 + n2, and we denote by μXi and μYj the expectations of Xi and Yj. Here again, we propose a
simple statistic Tn to detect if the observation xn is abnormal given the previous observations in the same
subsample.

In the following subsections, we describe these methods in detail. For methods 0, 1, and 3, we shall
also present a multivariate extension in the case where X1, . . . , Xn are n independent Gaussian random
vectors. These extensions allow us to deal with the situation where several biomarkers are systematically
measured on the same individual, in order to avoid multi-test issues.

2.1. Method 0

To detect if the observation xn is abnormal given the mean of the previous observations, the usual way is
to consider the statistic

Tn = Xn − X̄n−1

σ̂n−1

√
1 + 1

n−1

,

where X̄n−1 and σ̂ 2
n−1 are the empirical mean and variance of the sample X1, . . . , Xn−1, that is

X̄n−1 = 1

n − 1

n−1∑
k=1

Xk and σ̂ 2
n−1 = 1

n − 2

n−1∑
k=1

(Xk − X̄n−1)
2.

Sottas and others (2007) quoted that, for small n, one cannot use this statistic to detect an abnormal value
of Xn by comparing the observed value |tn| of |Tn| to the quantile 1 − α/2 of the N (0, 1) distribution.
This remark is correct, because for small n, the distribution of Tn is far from the N (0, 1) distribution.
However, this issue can easily be overcome by taking the quantile of the exact distribution of Tn under the
null hypothesis H0 : μ1 = μ2 = · · · = μn = μ. Indeed, under H0, it follows from Cochran’s Theorem
that σ̂n−1 is independent of the couple (Xn, X̄n−1). From this simple fact, we easily deduce that, under H0,
the statistic Tn has the Student(n − 2) distribution.
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The decision rule is then the following: at level α, we consider that the value xn is abnormal if |tn| >

cα/2,n−2, where cα/2,n−2 is the quantile of order 1 −α/2 of the Student(n − 2) distribution. This method can
be applied as soon as n ≥ 3.

Remark. If there are N different samples (corresponding to N different individuals) Sharpe et al. propose
to use the statistic

Zn = Xn − X̄n−1

σ̂uni

√
1 + 1

n−1

,

for each sample X1, . . . , Xn (the size n may not be the same for all samples). Here, the standard error σuni

is assumed to be the same for all the variables of all the samples, and σ̂uni is the estimator of σuni built
from all the variables. In that case, if N is large, the distribution of Zn is close to the N (0, 1) distribution,
and, at level α, the quantile 1 − α/2 of the N (0, 1) can be used to detect abnormal values. However, as
quoted in Sottas and others (2007), the assumption that σuni is the same for all the variables is unrealistic
for many biomarkers (in general, the variance depends on the individuals).

Multivariate extension. In this paragraph, we briefly present the multivariate extension of Method 0. Here
X1, . . . , Xn are n independent Gaussian R

d-valued random vectors, where Xi ∼ N (μi, C) and C is assumed
to be invertible. Again, we want to detect if the observation xn is abnormal given the previous observations.
This corresponds to the case where the same d markers are observed at each medical visit. One could of
course apply the previous procedure to each marker separately, but a single decision rule is preferable in
order to avoid multi-test issues. In that case, one can use the statistic

Tn = (n − 1)

nd
(Xn − X̄n−1)

′C−1
n−1(Xn − X̄n−1),

where

X̄n−1 = 1

n − 1

n−1∑
k=1

Xk and Cn−1 = 1

n − 1 − d

n−1∑
k=1

(Xk − X̄n−1)(Xk − X̄n−1)
′.

Under H0 : μ1 = μ2 = · · · = μn = μ, the statistic Tn has the Fisher(d, n − 1 − d) distribution (see
Proposition 8.14 in Eaton, 1983).

2.2. Method 1

Given the observations x1, . . . , xn from the sample X1, . . . , Xn there seems to be no good reason to consider
only the case where the last observation could be abnormal given the previous ones. A much more natural
question is: how to detect an abnormal observation among all the observations? Even if one focuses
only on the last observation, this question is of interest, because the presence of one (or more) abnormal
observation in the past could lead to a wrong decision about the new observation xn.

The first way is to iterate Method 0 as follows: one checks if x3 is abnormal given x1, x2, then one
checks if x4 is abnormal given x1, x2, x3, and so on up to the last step where one checks if xn is abnormal
given x1, . . . , xn−1. This approach is not satisfactory for at least two reasons: First, the procedure is not
invariant by time inversion (the forward and backward procedures can lead to two distinct results). Next,
there is a multi-test problem, because n − 2 tests are performed. If each test is performed at level α, then
the level of the series of tests will be greater than α. Moreover the level correction seems difficult, since
these tests are not independent, and the Bonferroni correction is known to be too conservative.
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Hence, to answer this question, a global test is preferable. We propose the statistic

Tn = max
i∈{1,...,n}

∣∣∣∣∣∣∣
Xi − X̄n,−i

σ̂n,−i

√
1 + 1

n−1

∣∣∣∣∣∣∣,

where

X̄n,−i = 1

n − 1

n∑
k=1,k �=i

Xk and σ̂ 2
n,−i = 1

n − 2

n∑
k=1,k �=i

(Xk − X̄n,−i)
2.

This method, based on the maximum of n (non-independent) variables with Student(n − 2) distribution,
can be seen as a straightforward extension of Method 0.

Under the null hypothesis H0 : μ1 = μ2 = · · · = μn = μ, one can easily check that the distribution
Pn of Tn does not depend on the unknown parameters (μ, σ 2), and can therefore be tabulated.

The decision rule is then the following: at level α, we decide that there is (at least) one abnormal
observation if tn > cα,n, where cα,n is such that Pn([cα,n, ∞[) = α. This method can be applied as soon as
n ≥ 3.

Multivariate extension. Let X1, . . . , Xn be n independent Gaussian R
d-valued random vectors, where

Xi ∼ N (μi, C) and C is assumed to be invertible. We want to detect if vector x� is abnormal given the
others. We propose the statistic:

Tn = (n − 1)

nd
max

i∈{1,...,n}
(Xi − X̄n,−i)

′C−1
n,−i(Xi − X̄n,−i),

where

X̄n,−i = 1

n − 1

n∑
k=1,k �=i

Xk and Cn,−i = 1

n − 1 − d

n∑
k=1,k �=i

(Xk − X̄n,−i)(Xk − X̄n,−i)
′.

Under the null hypothesis H0 : μ1 = μ2 = · · · = μn = μ, one can easily check that the distribution Pn

of Tn does not depend on μ nor C, and can therefore be tabulated.
The decision rule is then the following: at level α, we decide that there is (at least) one abnormal

observation if tn > cα,n, where cα,n is such that Pn([cα,n, ∞[) = α. This method can be applied as soon as
n ≥ d + 2. Note that, if d = 1, the statistic Tn is exactly the square of the statistic described before.

2.3. Method 2

Recall that, in our setting, the index i of the observation xi represents the order of observations (i.e. the
observation xi is the i-th measurement of a biomarker on the same individual). In this context, another
interesting question is: how to detect a series of consecutive observations that are abnormal given the rest
of the series?

More precisely, we want to know if there is a set I = {i, . . . , j} of consecutive integers, for which the
expectation of the Xk , k ∈ I is different from the expectation of the other variables, that is: μk = μ� = μA

if k , � do not belong to I and μk = μ� = μB if k , � belong to I .
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To answer this question, we propose the statistic

Tn = max
I∈I

∣∣∣∣∣∣∣
X̄I − X̄Ī

σ̂n,I

√
1
|I | + 1

n−|I |

∣∣∣∣∣∣∣,

where I is the collection of all possible intervals I included in {1, . . . , n} with length 1 ≤ |I | < n,

X̄I = 1

|I |
∑
k∈I

Xk , X̄Ī = 1

n − |I |
∑
k /∈I

Xk ,

and

σ̂ 2
n,I = 1

n − 2

(∑
k∈I

(Xk − X̄I )
2 +

n∑
k /∈I

(Xk − X̄Ī )
2

)
.

Under the null hypothesis H0 : μ1 = μ2 = · · · = μn = μ, one can easily check that the distribution
Pn of Tn does not depend on the unknown parameters (μ, σ 2), and can therefore be tabulated.

The decision rule is then the following: at level α, we decide that there is (at least) one consecutive
series of abnormal observations if tn > cα,n, where cα,n is such that Pn([cα,n, ∞[) = α. This method can
be applied as soon as n ≥ 3.

2.4. Method 3

Let us recall the context: we have two series of observations x1, . . . , xn1and y1, . . . , yn2 and we want to
know if one of these observations is abnormal given the other ones in the same subsample.

We propose the statistic

Tn = max

⎧⎪⎨
⎪⎩ max

i∈{1,...,n1}

∣∣∣∣∣∣∣
Xi − X̄n1,−i

σ̂X ,−i,Y

√
1 + 1

n1−1

∣∣∣∣∣∣∣, max
j∈{1,...,n2}

∣∣∣∣∣∣∣
Yj − Ȳn2,−j

σ̂Y ,−j,X

√
1 + 1

n2−1

∣∣∣∣∣∣∣
⎫⎪⎬
⎪⎭,

where

X̄n1,−i = 1

n1 − 1

n1∑
k=1,k �=i

Xk , Ȳn2,−j = 1

n2 − 1

n2∑
k=1,k �=j

Yk ,

σ̂ 2
X ,−i,Y = 1

n − 3

⎛
⎝ n1∑

k=1,k �=i

(Xk − X̄n1,−i)
2 +

n2∑
k=1

(Yk − Ȳn2)
2

⎞
⎠,

and

σ̂ 2
Y ,−j,X = 1

n − 3

⎛
⎝ n1∑

k=1

(Xk − X̄n1)
2 +

n2∑
k=1,k �=j

(Yk − Ȳn2,−j)
2

⎞
⎠.
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Under the null hypothesis

H0 : μX1 = μX2 = · · · = μXn1
= μX and μY1 = μY2 = · · · = μYn2

= μY ,

one can easily check that the distribution Pn of Tn does not depend on the unknown parameters (μX , μY , σ 2),
and can therefore be tabulated.

The decision rule is then the following: at level α, we decide that there is (at least) one abnormal
observation among the two samples if tn > cα,n, where cα,n is such that Pn([cα,n, ∞[) = α. This method
can be applied as soon as n1 ≥ 2 and n2 ≥ 2.

Multivariate extension. Here X1, . . . , Xn1 and Y2, . . . , Yn2 are two independent series of independent Gauss-
ian R

d-valued random vectors, with Xi ∼ N (μXi , C), Yj ∼ N (μYj , C) and C is assumed to be invertible.
We want to detect if the vector xk or y� is abnormal given the other ones in the same subsample. We propose
the statistic

Tn = max
{

(n1 − 1)

n1d
max

i∈{1,...,n1}
(Xi − X̄n1,−i)

′C−1
X ,−i,Y (Xi − X̄n1,−i),

(n2 − 1)

n2d
max

j∈{1,...,n2}
(Yj − Ȳn2,−j)

′C−1
Y ,−j,X (Yj − Ȳn2,−j)

}
,

where

X̄n1,−i = 1

n1 − 1

n1∑
k=1,k �=i

Xk , Ȳn2,−j = 1

n2 − 1

n2∑
k=1,k �=j

Yk ,

CX ,−i,Y = 1

n − d − 2

⎛
⎝ n1∑

k=1,k �=i

(Xk − X̄n1,−i)(Xk − X̄n1,−i)
′ +

n2∑
k=1

(Yk − Ȳn2)(Yk − Ȳn2)
′

⎞
⎠,

and

CY ,−j,X = 1

n − d − 2

⎛
⎝ n1∑

k=1

(Xk − X̄n1)(Xk − X̄n1)
′ +

n2∑
k=1,k �=j

(Yk − Ȳn2,−j)(Yk − Ȳn2,−j)
′

⎞
⎠.

Under the null hypothesis

H0 : μX1 = μX2 = · · · = μXn1
= μX and μY1 = μY2 = · · · = μYn2

= μY ,

one can easily check that the distribution Pn of Tn does not depend on the unknown parameters (μX , μY , C)

and can therefore be tabulated.
The decision rule is then the following: at level α, we decide that there is (at least) one abnormal

observation among the two samples if tn > cα,n, where cα,n is such that Pn([cα,n, ∞[) = α. This method
can be applied as soon as n1 ≥ 2, n2 ≥ 2, and n ≥ d + 3.

3. QUANTILES, POWER, AND ASYMPTOTIC DISTRIBUTION

In the following sections, we use MATLAB R2011b to compute the quantiles and assess the power of the
methods. The tests and graphs were done using R v3.3.2.
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Fig. 1. The levels estimated for Method 1 (α = 2.5%), along with the exact levels for max (|N (0, 1) |) and
max (|Student (n − 2) |) for n = 3 to 597 observations (106 individuals). The levels are detailed in the inset table for
the first 10 observations.

3.1. Computation of the quantiles

In this section, we explain how to compute the quantiles of the distributions of the statistics Tn under the null
hypothesis, for methods 0, 1, 2, and 3. For Method 0, the quantile of order α of distribution of the statistic
|Tn| is simply the quantile of order 1 − α/2 of the Student(n − 2) distribution. The statistic Tn of Method
1 is the maximum of the absolute value of non-independent variables with Student(n − 2) distribution
(respectively Fisher (d, n − 1 − d) distribution in the multivariate case). To compute the quantiles of
the distribution of this statistic, we use a standard Monte-Carlo procedure with 20 × 106 independent
experiments, for each level α. For each n from 3 to 20, the quantiles are computed from 80% to 99.99%
(see Supplementary material available at Biostatistics online). The same method is used for computing the
quantiles of the distributions of the statistics of Methods 2 and 3 (please refer to Supplementary material
available at Biostatistics online). For Method 1, we also compare the quantiles obtained by simulation
to the quantiles of the distribution of the maximum of the absolute values of n independent variables
with Student(n − 2) distribution. For the quantile 97.5%, we see that the simulated quantiles and the
exact quantiles of this approximating distribution are almost identical as soon as n > 5. Hence, at this
level, the exact quantile of the approximating distribution can be used as soon as n > 5. In Figure 1, we
plot the quantile 97.5% obtained by simulation, the exact quantile of the approximating distribution, and
also the exact quantiles of the distribution of the absolute values of n independent random variables with
distribution N (0, 1). We see that the convergence to the quantiles based on the Gaussian distribution is
quite slow.
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A B

C D

Fig. 2. Frequency of abnormal values detected by Method 1 (A, C) and its multivariate extension (B, D) as a function
of μ and μd , for the levels α = 5% (A, B) and α = 1% (C, D). The dashed line at μ = 3 is a visual indicator.

3.2. Power of the Method 1

In this subsection, we show how Method 1 will detect an abnormal value when all the others are identically
distributed. We proceed as follows: we simulate 1 × 106 sequences consisting of n independent Gaussian
random variables. The third random variable has distribution N (μ, 1) with μ ≥ 0, whereas all the other
random variables have distribution N (0, 1). The simulations are performed for a number of observations
n ranging from 4 to 15 and μ ranging from 0 to 10 with a step of 0.1. We use the same procedure for
the multivariate analysis, with d = 2. The third random vector has distribution N (μ̃, C), whereas all the
other random vectors have distribution N (0, Id). Here μ̃ = (μ, μ) with the same possible values of μ as
in the univariate case, and the covariance matrix C is given by

C =
[

1 0.5
0.5 1

]

The results are given in Figure 2 below.
As expected, the power curve is increasing with n and μ. For the univariate version of Method 1,

percentages of abnormal sequences detected for n = 9 and μ, respectively, equals to 2, 4, and 6 are
10.53%, 51.06%, and 90.57%. Similar graphs can be obtained for Methods 2 and 3.
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3.3. Asymptotic result for Methods 1 and 3

In this subsection, we give the asymptotic distribution (as n goes to infinity) of the (centered and normal-
ized) statistic Tn of Method 1 under H0. At the end, we shall also deal with the statistic Tn of Method 3. This
asymptotic distribution is the Gumbel distribution. As n goes to infinity, the distribution of Tn is close to
the distribution of the maximum of the absolute value of n iid random variables with N (0, 1) distribution
(see Figure 1). Recall the expression of the terms of standardization introduced by Hall (1979):

βn = √
2 log n − log(4π log n)

2
√

(2 log n)
.

One can prove the following result: under the null hypothesis H0, the distribution of the random variable
β2n(Tn − β2n) converges to a Gumbel distribution, that is a distribution whose cumulative distribution
function is given by �(x) = exp(− exp(−x)).

The proof of this proposition is not difficult. The main point is to replace the empirical means and
variances in the definition of Tn by the true values of the parameters μ and σ 2. Then, apply a known result
for the distribution of the maximum absolute value of n iid random variables with N (0, 1) distribution
(see for instance Gasull and others, 2015a). As for the Gaussian case, the convergence of the maximum
to the Gumbel distribution is very slow (rate of order log n). So the quantiles of the Gumbel distribution
can be used for very large samples only.

Let us consider now the statistic Tn proposed at the end of Section 2.2 to deal with the multivariate
case. Arguing as in the 1D case, we easily see that the asymptotic distribution of Tn under H0 is the same
as that of the maximum of n iid random variables ξ1, . . . , ξn such that dξi ∼ χ 2(d). The standard norming
sequences are given for instance in the book by Embrechts and others (2013) (see p. 155). It follows that,
under H0 and for d ≥ 2, d(Tn − bn)/2 converges in distribution as n → ∞ to the Gumbel distribution,
where

bn = 2

d

(
log n + (d − 2)

2
log log n − log 


(
d

2

))
.

We refer to the article by Gasull and others (2015b), Section 5, for more accurate norming sequences.
The same proofs can be done for the statistic Tn of Method 3, with straightforward modifications. In

the 1D case, we find that, under H0, the distribution of the random variable β2n(Tn − β2n) converges to
a Gumbel distribution, provided that min(n1, n2) > C(log(n))a for some C > 0 and some a > 1. In the
multivariate case (see the end of Section 2.4), the distribution of d(Tn − bn)/2 converges under H0 to a
Gumbel distribution under the same condition on min(n1, n2). Note that this last restriction on n1, n2 is
very mild and should be realized in all practical situations.

4. APPLICATION TO SOCCER PLAYERS DATA

4.1. Description of the data base

After obtaining the approval of the Institutional Ethics Committee, our three methods were applied to
a database of elite soccer players. It consists of five typical biological markers from 2577 male soccer
players from the French elite leagues 1 and 2. Markers include concentrations of ferritin (μmol/L),
serum iron (μmol/L), hemoglobin (g/L), erythrocytes (T/L), and hematocrit levels (%). The biomarkers
were collected every 6 months in July/August and in January/March from 2006 to 2012 for a total of 12
collections. The large interval between two measures (around 6 months) allowed for independent sampling
(Sharpe and others, 2006). We kept the players that had at least 5 measurements over the 12 possible
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Table 1. Percentage of individual series significantly non-normal with the
Shapiro test and corresponding mean of P-values. And results of the sign tests.
(L) indicates a log-transformation of the data

Marker % of non-normal Mean P-value of P-value of the
series Shapiro tests sign test

Ferritin (L) 7.05 0.47 0.804
Serum iron (L) 7.67 0.49 0.703
Hemoglobin 6.91 0.46 3 × 10−8

Erythrocytes 6.53 0.48 3 × 10−8

Ferritin 5.25 0.48 1 × 10−10

measurements, totalizing: 757 players for ferritin and serum iron, 799 (erythrocytes and hematocrit), and
807 for hemoglobin because of the high number of transfers between clubs, injuries, and the progressive
inclusion of new clubs in the elite league. Moreover, a technical issue with the sampling instrument
resulted in the loss of the data in the markers of the 2009 July/August collection. According to Custer and
others (1995) and Tufts and others (1985) the measure of the ferritin and serum iron have a log-normal
distribution, so we take the logarithm of the observations for these two biomarkers.

4.2. Preliminary analysis

The individual series of biomarkers must comply with the conditions described in Section 2. Regarding
the assumption of normality: for each individual and each biomarker, we use the Shapiro test to confirm
that it is not unrealistic to assume that the observations are drawn from a normal sample.

We note that, for each biomarker, the percentage of non-normal sequences detected by the test is
not significantly different from the 5% level (that is the false-discovery rate of the test under the null
hypothesis) (see Table 1). Regarding the assumption of equidistribution for Methods 1 and 2, it is known
that the training intensity and frequency, the environment, and the period are among the factors inducing
a possible variability in biological markers (Malcovati and others, 2003; Thirup, 2003). The impact of
seasonal changes on hematologic markers has already been investigated in both the general and athletic
population. However, some uncertainty remains, especially regarding hematocrit as reported in Malcovati
and others (2003), Meyer and Meister (2011), and Thirup (2003), opposing Heisterberg and others (2013).
Hence, to see if the period of the year has a significant influence on the biomarkers, we chose to perform
a sign test based on the successive differences Di = XS,i − XW ,i, where XS,i corresponds to the measure in
summer of year i, and XW ,i corresponds to the measure in winter of year i. We collect all possible Di, for
all individuals and perform the sign test on this large data set. This is possible because the sign test is very
robust, and not influenced by the inter-variability between individuals. All that matters for its application
is that the variables 1Di>0 are iid, which is certainly true once we admit that a difference of 6 months is
enough for the independency. Under the null hypothesis, the period of the year has no influence on the
biomarker, the distribution of the number of positive Di follows a binomial distribution B(N , 0.5) (N being
the total number of Di for all the individuals).

The sign tests give very small P-values for hemoglobin, erythrocytes and hematocrit, meaning that
there is a significant difference between summer and winter for these three biomarkers (see Table 1).
Therefore, only the ferritin and serum iron are eligible for Methods 1 and 2. For the other markers, the
third method can be applied.

For the two markers ferritin and serum iron, we see that the empirical distribution of Tn (Method 1)
is close to the theoretical one under H0 (see Figure of Supplementary material available at Biostatistics
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Table 2. Number of abnormal series for each biomarker and method (α = 5%)

Ferritin Serum ion Red blood cells Hemoglobin Hematocrit Total

Method 1
Usual (n) 715 695 — — — 1410
Unusual (n) 42 62 — — — 104
Unusual (%) 5.55 8.19 — — — 6.87

(Multivariate)
Usual (n) 661 — — — 661
Unusual (n) 49 — — — 49
Unusual (%) 6.90 — — — 6.9

Method 2
Usual (n) 674 707 — — — 1381
Unusual (n) 83 50 — — — 133
Unusual (%) 10.96 6.61 — — — 8.78

Method 3
Usual (n) — — 577 588 593 1758
Unusual (n) — — 41 38 35 114
Unusual (%) — — 6.63 6.07 5.57 6.09

online). This confirms that the quantiles of the theoretical distribution of Tn can be used to detect abnormal
values on our dataset.

4.3. Results

The three methods are used on the longitudinal follow-up of five biological markers collected from
elite soccer players. Some series are log-transformed to ensure that the variables were normally dis-
tributed (see Table 1), and we have carefully taken care of the seasonality (detected by the sign test
with a very small P-value, see Table 1 and Section 4.2). As stated previously, it is not clear whether
the hematocrit marker is impacted by the seasonal change but our results show a seasonal variability
for hemoglobin, erythrocytes, and hematocrit (see Table 1). Hence, we use Method 3 for these three
markers, although these variations are possibly linked to the geographical trip of individuals due to
training or competition reasons. According to these preliminary analyses, we apply Method 1 (and
it’s multivariate extension) and Method 2 to the ferritin and the serum iron, and Method 3 to erythro-
cytes, hemoglobin, and hematocrit. We keep the individuals with at least 3 values per season for the
Method 3. The frequency of abnormal series detected by the procedures are reported in Table 2 for a level
α = 5%.

Most of the results are not too far from the expected false-discovery rate: between 5% and 6.7% for
Ferritin/Method 1, Serum iron/Method 2, and all three others biomarkers for Method 3; 8.19% for Serum
Iron/Method 1. However, the percentage of abnormal subseries for Ferritin/Method 2 is close to 11%, hence
significantly different from the expected level α = 5%. We cannot directly assert that these differences
are related to a pathological behavior; for instance it could be explained by a slight departure from the
Gaussian distribution (7.05% of the Ferritin series were detected to be non-normal by the Shapiro test at
level 5%). Thus, further analyses are required to shed light on these series. We find the same percentage
of abnormal values for the multivariate version of Method 1 as for the two univariate procedures (6.9%
in both cases). In Figure 3 below, we give some examples of abnormal observations detected by the three
methods, for different biomarkers.
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A B C

D

G

J K L

H I

E F

Fig. 3. Examples of results for the Method 1 (A–C), Method 2 (D–F), and Method 3 (G–I) in different individuals
for the serum iron, ferritin and erythrocyte values. Panels (J–L) show some results for the multivariate version of
Method 1.

5. DISCUSSION

This article introduces three Z-scores-based methods for detecting abnormal values in a series of biological
measures from an individual’s sample. They allow for assessing the individual baseline while taking into
account the seasonal changes that alter the values of biomarkers. The multivariate approach is also devel-
oped in order to avoid multi-test issues and to take care of the possible correlations between biomarkers.
Finally, we make extensive simulations to obtain the power-curve of our procedures for certain points of
the alternative hypothesis. This power-curve could be used to compare our procedures to other methods.
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Unfortunately, such power curves are not available in the article by Sottas and others (2007), and it is
somewhat unclear how they could be produced. Our methods are tested on the follow-up of elite athletes
and we found the results in accordance with the expected false-discovery rate, in most of the cases. Our
methods can be extended to the Gaussian linear model, but the quantile tables have to be computed for
each new design. A possible alternative would be to compute an approximate p-value by using Monte
Carlo simulations.

The longitudinal values of athlete’s hematological markers were reported to differ from those of the
general population. Several previous works have shown that biological values are affected by the player’s
position, level, ethnic origin, and age among other parameters. As a result, Malcovati and others (2003)
suggested focusing on intra-variability only. Sharpe and others (2006) and Sottas and others (2007)
introduced two interesting approaches to identify outliers in longitudinal follow-ups. However, Sharpe
and others (2006) assume that the variance of the random variables is the same for all individuals, which is
not relevant in many cases. The method proposed by Sottas and others (2007) is convincing and provides
good results, but the need of an extra population makes it rather complicated to use (a large relevant
population has to be used for each different biomarker). In contrast, our methods are particularly simple,
and can be tabulated, and then applied to all biomarkers, provided the distribution is Gaussian (up to a
known deterministic transformation).

Bejder and others (2016) showed that acute hyperhydration reduces the sensitivity of the Bayes APB
procedure for usual blood markers, and this could affect the sensitivity of our methods as well. However,
Lobigs and others (2017a) proposed new plasma volume biomarkers that should help to correct this effect.

To conclude this section, let us discuss the relevance of a hierarchical Bayes procedure in our context.
The following are elements of discussion:

• First, for a Bayes procedure, one needs to choose an a priori distribution on the parameters
(μ, σ 2).This can be done by using an extra population, as in Sottas and others (2007), who fit a
parametric model to the parameters. If this extra population is not available, but there are many
individuals in the study (as in our soccer players database), one can select a subpopulation to
perform this first estimation step. Note however, the methods described in the present article can
be applied to one single individual without the help of an extra population.

• Once we know the a priori distribution, we have access via the Bayes rule to the global distribution
of the variables (in the Bayesian framework, the distribution N (μ, σ 2) is the conditional distribution
of the variables Xi given (μ, σ 2)). Hence, we can test if the observations are abnormal with respect
to this distribution. However, it is important to point out that this is not what we have in mind: we
want to test if, for a given individual, some observations are abnormal; this can be done efficiently
only if the characteristics of the individuals are taken into account. If we use the global distribution
of the variables, we will primarily detect individuals that are different from the rest of the population
(because the observations of the bio-markers of these individuals will very likely be abnormal with
respect to the global distribution). But we are not interested to know if an individual is different
from the rest of the population (it is irrelevant for professional athletes).

• Sottas and others (2007) used an intermediate approach. Thanks to the Bayes rule again, they
compute the conditional distribution of Xn given X1, . . . , Xn−1, and they use the quantiles of this
distribution to see if the observation xn is abnormal or not. This procedure is satisfactory (even if it
requires an extra population for each biomarker to determine an appropriate a priori distribution).
It is similar to our Method 0, but it does not answer the question: is there at least one abnormal
value in the whole sequence of measurements of a single individual? One way to answer is to
perform a sequential procedure, testing if x2 is abnormal given x1, if x3 is abnormal given x1, x2,
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and so on . . . but this leads to a non-trivial multi-test problem, as already explained at the beginning
of Section 2.2.

To summarize, our methods allow for a single-detection rule, thus avoiding multi-test issues that would
occur by testing if each new value is abnormal. In the univariate case, Method 1 can be applied with at
least three observations per individual. This is of course a (rather mild) restriction of the method but, on
another hand, it can be applied to any sequence of independent Gaussian outcomes, without the help of
an extra cohort to determine an appropriate a priori distribution.

6. CONCLUSION

We propose three methods to detect abnormal values or subseries in longitudinal follow-ups.These methods
are simple and easy to implement, and their significance levels can be easily computed via Monte Carlo
simulations. They can be applied to independent and normally distributed random variables, for series with
at least three observations. This last point does not seem to be a strong limitation, since today’s follow-ups
often include more than three observations, and the sampling rate is increasing over the years. We apply
these methods to a large dataset, and we detect some abnormal values (some of them being false positives).
Additional investigations should be carried out by the medical staff in order to shed light on abnormal
follow-ups. The proposed methods could be improved to include additional periodic environmental effects,
such as training at altitude. Practical applications include detecting abnormal values in elite athletes’follow-
ups for clinical or anti-doping purposes. It would also be useful in detecting pathological values in clinical
follow-ups of patients based on individual rather than population-based thresholds.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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